What is a Movable Game Jam?
Put simply, it’s a one-day event where kids come to make games. The event has three phases. First, all students engage in guided activities that introduce them to some of the basic game design principles. Second, students choose to engage in 1 or 2 of four available stations, each of which contains a different game design activity and is run by a different Hive organization. This component comprises the bulk of the time in the game jam. This component will also be made up of a different set of stations and hosted by a different organization in each game jam, thus making both the content and location “movable.” Third, there is a final showcase event in which students show the games that they have made to parents and other students in a science fair type of format. Organizations involved in past events include Iridescent, Globalkids, Institute of Play, Museum of the Moving Image, MOUSE, Eyebeam, and ExposureCamp.

Why run a Movable Game Jam?
Simple: it’s good for youth and for organizations. Youth get to pursue interests in gaming in a constructive context that builds valuable 21st century skills. Organizations get to share ideas and workload, connecting and supporting each other’s youth as well as learning best practices from each other.

What is in the Hive Movable Game Jam Guide?
Mostly tips and tricks from NYC-area Hive organizations that have been running this event so far. We’ll share our format as well as sample activities and resources we’ve used - basically things one would need to get a movable game jam up and running. It’s in draft form - we’re continually adding to it as we and other groups run more events. Check out the Hive blog at hivenyc.org to keep up with this and many other awesome Connected Learning projects.
I. General Format

1. Introductory Phase
 a. Introduction and Ice Breaker (15 min)
 b. Introductory activity to the Principles of Game Design (30 min)

2. Open design Phase
 a. Session 1 (50 min. at a station of the student’s choice)
 b. Break (10 min)
 c. Session 2 (50 min. at a second station of the student’s choice)

4. Feedback survey for students, Shareout prep time for staff (15 min)

5. Parent Shareout Phase (30 min)

II. Description of Format

A Game Jam event should go for 3.5 hours. The event has three essential components- an introductory phase, an open design phase, and a parent shareout phase.

Introductory Phase: This component starts with a welcome and introduction of staff, but the majority of the time is spent in a game design activity (see the next section for some options). That activity serves two purposes, first to act as an ice-breaker, and second to introduce students to principles and terminology in game design. Staff and students should be able to refer back to concepts and terms introduced in this activity throughout the event.

Open Design Phase: The meat of the event. Students choose stations to attend to build designs of their choice. Student agency is important here, which means both allowing kids choice of where to go, and what to do at each station. No two student creations should look alike- this is a chance for a student to create something new and original with staff guidance and support.

Parent Shareout Phase: Parents will be invited back to the event for the final 30 minutes, to check out their kid’s designs in a science fair type of format. This allows everyone a chance to both share their design with others, and to get personalized feedback from other peers, staff, and parents. This shareout technique is also scalable with any number of students.

III. Introductory activities

1. MQ Challenge: Find Play in Things
 http://beta.gamek.it/warm-up/everyday-objects-2/

A warmup exercise that challenges novice game designers to examine a set of objects, explore their properties, and design a game around them. Youth participants were divided into teams of 4 and received a variety of materials to use, including rubber bands, tape, bandanas, cups, string, paper clips, etc.
Groups spent 10 minutes exploring the 'play-ability' of the objects, the attributes or affordances that they could use to create interaction. Facilitators encouraged groups to look at the affordances of the objects. Once they uncovered a set of engaging mechanics, participants defined a goal for their game, followed by a ruleset. Once teams had finalized their designs, we held a large group playtest. Each group had a chance to playtest another group’s game and give feedback.

1. **Get started.** Divide participants into groups of 3-4. Make sure all the materials are laid out. (3 min)
2. **Gather materials.** Groups choose 2-3 components: (5 min)
 a. cups
 b. coins
 c. ping pong balls
 d. bandanas
 e. string
 f. post-its
 g. pennies
 h. markers
 i. masking tape
3. **Explore ‘Play-ability’ of objects.** Groups play with each object to get a sense of how they might use it in a game. Have groups share out a few of the mechanics they found. (7 min)
 a. For example, rubber bands can stretch, coins can flip, cups can stack
4. **Pick one core activity/mechanic.** Groups build a game around this activity. (5 min)
 a. For example, shooting rubber bands.
5. **Pick a goal.** How can all the components combine to create a game around that core mechanic? What is the goal? What is the challenge? (5 min)
 a. For example: Shooting rubber bands into cups.
6. **Create rules.** Groups refine their game idea into a prototype by creating a title and rulesheet for their game using a rulesheet worksheet. The group should also conduct internal playtests to test their rules. (10 min)
 a. For example: Players must stand behind the line.
 b. The worksheet should include:
 i. name of the game
 ii. rules of the game
 iii. goal of the game
 iv. any and all mechanics used in the game
7. **Playtest your game.** Groups will switch and play test each other’s games. Players should give the game designers constructive feedback. (10 min)
2. Hacking Tic Tac Toe

Summary
Analyze Tic-Tac-Toe and then redesign the game by changing a few rules.

Goals
• understanding how changing game rules changes the system of a game
• introduction to the iterative process
• icebreaker game design exercise

Before the exercise
Have participants play a few rounds of tic tac toe with the person next to them.
Through a whole group discussion, go through the principles of game design (Space, Components, Rules, Mechanics, and Goals). make a general list of the rules of Tic-Tac-Toe.
For example:
1. Play takes place on a 3×3 grid
2. Two players alternate turns placing an X or an O in an empty square
3. Three of the same symbols in a row wins
4. If no one can play, the game ends in a draw
Then discuss why Tic-Tac-Toe always ends in a draw for most players. Have the class brainstorm what they might modify in order to change the game: the grid size and shape, the number of players, the winning conditions, the things you can do on a turn, etc.

Modify!
Pairs of students try to redesign the game in order to increase the space of possibility of the game – to make it more interesting to play than the “solved problem” of classic Tic-Tac-Toe. As they design, have them change as little as possible – one, two, or three rules at the most. They should follow the iterative process of making small changes, playing their modified version, analyzing how they affected the game, and then redesigning again. Finally, groups can share their modifications with the class, and what did and didn’t work. If there are too many groups for everyone to share, then pairs of groups can play each others’ games and discuss.

Students can create hundreds of variations of Tic-Tac-Toe. An exceptionally elegant variation, for example, was one where nothing was changed – except the winning condition. If you got 3-in-a-row, you lost. Playing this version of Tic-Tac-Toe means trying to force your opponent to make what we normally consider a “winning move.” As a minimal rule-change that turns the “solved” game of Tic-Tac-Toe into a brain-twisting puzzle. A great modification!

IV. Station Descriptions
Here the descriptions of the stations that we advertised, with brief descriptions of how each station ran.

Gamek.it http://beta.gamek.it/
Gamek.it challenges provide kids with simple game constraints that spur great design thinking. Kids will have a choice of two different Gamek.it challenges-- “Mix Strategy & Luck” and “Create Competition”. Kids will come away with a set of rules for their games, diagrams, and pics. These
games can be played at home with everyday game objects, like cards, dice, balls, and markers. Uses one labtop for reference to the challenge

Twine http://twinery.org/
Twine makes it easy to create interactive stories that are like Choose Your Own Adventure games. Kids will play a sample Twine game and create their own short interactive adventure. One of the easiest platforms to use, Twine requires no programming skills and allows you to create rich, detailed stories where the possibilities are limitless. These games can be uploaded to a DropBox and shared with friends and family.

First, kids will be invited to play through the first 8 levels of this physics simulation game. After completing this first half of the game, kids will then focus their attention on the game’s level editor. Kids will design at least one completely functional level that has at least three different goals (so is reasonable complex).

Hackagame http://www.hackagame.org/
The most advanced game design platform we will offer. Kids will work on Hackagame.org, where they can access the code to a fully functioning version of Pong or Arkanoid, with the HTML code for the game. Kids will have to hack and modify the game in some significant way by changing the HTML code, producing a fundamentally different game when they are done.

Games from Scratch: http://scratch.mit.edu/
Students will be introduced to the basics of the Scratch programming language, have opportunities to explore and solve puzzles that will build their skills, ultimately allowing them to remix a game or create their own….from SCRATCH!

Rules are the Program:
Students will play the classic arcade game FROGGER, paying close attention to the rules for each of the main characters (frog, car, etc). Students will be challenged to write down the rules for each individual character, and then play a life-size physical version of the game (we will create a game board on the floor with painters tape) based on those rules. This is a specific Gamek.it challenge, not yet released on that website.

Power Gloves:
Students will turn regular gloves into game controllers to control. Using a template, they will cut out pieces of foam paper, conductive fabric, and adhesive paper for each glove in the pair. They will iron on the adhesive paper to the copper fabric and the craft foam paper. Then they glue on this layered pad to the glove. With alligator clips, the students will connect the pad to the Floras and then connect the Flora to the computer. Then we will provide the code so that they can use the gloves and play the digital games.
V. Resources

Feedback survey
The full survey is available here. Some of the items didn’t make sense or give great answers, so we’re including questions for a revised feedback form below.

- How old are you?
- What is your previous experience playing games?
- What is your previous experience writing codes or programming?
- Which stations did you check out at the Game Jam?
- Which station was your favorite and why?
- Tell us something you learned about how to make your game better at this Game Jam.
- Was there anything you didn’t like about the Game Jam? Tell us so that we can make it better!

Parent Shareout document
Since parents were not around during the Game Jam, they may not have a good idea of what their kids had been up to when they showed up to the final shareout. Although we prefaced the shareout with a description of what happened, we also wanted to make sure the parents would be able to have meaningful conversations with their kids about what they built. So we created a document with sample open-ended questions for parents to use as they looked at and played the games their kids created.

Dear Guests,

Thank you for attending our Game Jam share out! Please feel free to walk around the studio and observe the cool things your child and others have taken the time to create today. Here are some questions that you can ask to get more information from the designer about the game…

- What is the game/level called?
- How did you create it?
- What is it supposed to do?
- Why should someone play your level/game?
- How did you redesign it/what did you change to improve it?
- What would you continue working on or change if you had time?
- What was challenging today?
- What did you really enjoy during designing today?

Best practices for running game jams
To be added in the future drafts!